Documentation Documentation
Identifiant IdRef : 214339904
Notice de type Rameau

Point d'accès autorisé

Informations

Langue d'expression : Francais
Date de naissance :  2016
Note publique d''information : 
Cette thèse porte sur l’étude de certaines propriétés dynamiques de variétés M = X/ Γ à courbure sectionnelle négative pincée, où X est une variété de Hadamard et Γ = π 1(M) agit par isométries sur X. Nous considérons le cas de certains groupes de Schottky Γ de type divergent, munis d’une mesure de Bowen-Margulis mΓ �� infinie sur le fibré unitaire tangent T1X/ Γ. Sous ces hypothèses, nous définissons tout d’abord un espace symbolique permettant de coder l’action du groupe Γ sur le bord de X et celle du flot géodésique (gt)tϵR sur T1X/Γ . Ces codages nous permettent dans un premier temps de préciser la vitesse de mélange du flot géodésique ; nous montrons ensuite comment obtenir une minoration du nombre NG (R) de géodésiques fermées de longueur ≤ R contenues dans la variété M; nous donnons enfin un équivalent de la fonction orbitale # { y ϵ Γ | d(o, y o) ≤ R} quand R tend vers l’infini.

Note publique d''information : 
We study here some dynamical properties of manifolds M = X/ Γ, endowed with a pinched negative sectional curvature, where X is a Hadamard manifold and Γ = π 1(M) acts by isometries on X. More precisely, we consider divergent Schottky groups Γ whose Bowen-Margulis measure mΓ �� is infinite on the unit tangent bundle T1X/ Γ. We first define a coding of the action of Γ on the boundary of X, which will be useful to build a symbolic space associated with the geodesic flow. Then we precise the rate of mixing of the geodesic flow (gt)tϵR on T1X/ Γ In a second part, we study the number of closed geodesics on M with length ≤ R. Finally, we give an asymptotic for the orbital counting function # { y ϵ Γ | d(o, y o) ≤ R} when R goes to infinity.

Notices d'autorité liées

Autres identifiants

Utilisation dans Rameau

Le point d'accès peut être employé dans un point d'accès sujet

... Références liées : ...