Documentation Documentation
Identifiant IdRef : 226724166
Notice de type Rameau

Point d'accès autorisé

Informations

Langue d'expression : Francais
Date de naissance :  2007
Note publique d''information : 
Deux thématiques différentes des probabilités numériques et de leurs applications financières sont abordées dans ma thèse: l'une traite de l'approximation et de la simulation d'équations différentielles stochastiques rétrogrades (EDSR), l'autre est liée aux options américaines et les aborde du point de vue de l'optimisation de domaine et des perturbations de frontière. La première partie de ma thèse revisite la question d'analyse de convergence dans la discrétisation en temps d' EDSR markoviennes (Y,Z) en une équation de programmation dynamique de n pas de temps. Nous établissons un développement limité à l'ordre 1 de l'erreur sur (Y,Z) : précisément, l'erreur trajectorielle sur X se transfère intégralement sur l'EDSR et montre ainsi que si X est approché avec précision ou simulé exactement, de meilleurs vitesses sont possibles (en 1/n). La seconde partie de ma thèse s'intéresse à la résolution des EDSR via le procédé de Picard et les méthodes de Monte Carlo séquentielles. Nous avons montré que la convergence de notre algorithme a lieu à vitesse géométrique et avec une précision indépendante au 1er ordre du nombre de simulations. La dernière partie de ma thèse regroupe des premiers résultats sur la valorisation d'options américaines par optimisation de la frontière d'exercice. La clé de voûte de ce type d'approche est la capacité à évaluer un gradient par rapport à la frontière. Le temps continu a été traité par Costantini et al (2006) et cette thèse couvre le cas discret des options Bermuda.

Notices d'autorité liées

Autres identifiants

Utilisation dans Rameau

Le point d'accès peut être employé dans un point d'accès sujet

... Références liées : ...