paprika.idref.fr paprika.idref.fr data.idref.fr data.idref.fr Documentation Documentation
Identifiant pérenne de la notice : 247632406Copier cet identifiant (PPN)
Notice de type Notice de regroupement

Point d'accès autorisé

Étude sur la performance des algorithmes génétiques appliqués à une classe de problèmes d'optimisation

Information

Langue d'expression : français
Date de parution :  2005

Notes

Note publique d'information : 
L'algorithme génétique (AG) est un algorithme qui imite le processus de la sélection naturelle de Darwin. Il est souvent utilisé comme outil d'optimisation. L'AG génère successivement des populations d'individus. Les individus représentent des solutions potentielles du problème d'optimisation. Pour générer des populations successives l'AG utilise trois opérateurs stochastiques : mutation, croisement, sélection. L'AG est un outil d'optimisation complexe. En effet il faut régler différents paramètres (la probabilité de mutation, la probabilité de croisement, la pression sélective, la taille de la population ...) qui interagissent entre eux. Très peu de résultats théoriques mesurent l'impact du contrôle de différents paramètres sur la performance d'un AG. La théorie des perturbations (développée par Freidlin et Wentzell dans Random perturbations of dynamical systems) permet de déterminer des contrôles ``adéquats'' de différents paramètres de l'AG. Dans cette thèse, nous utilisons et mettons au point des techniques de contrôle de paramètres d'AGs via la théorie des perturbations.

Note publique d'information : 
Genetic algorithms (GAs) are computation methods inspired by evolution. They have drawn much attention as optimization methods in the last two decades. These optimization methods are population-based algorithms which simulate natural evolution. A population is a set of individuals. Each of them represents a candidate solution to the optimization problem. Populations were evolved by applying genetic operators (mutation process, crossing-over process, selection process). When defining a GA we need to choose some parameters probability of mutation, probability of crossover, the selection pressure, the population size and the penalty coefficients. The complexity of the interaction between the parameters make the selection of a perfect tuning/controlling of them very difficult. In order to compare the asymptotical behavior of GAs which have different parameters controlling, we used the theory of the perturbed Markov Chain made by Freidlin and Wentzell in Random perturbations of dynamical systems. In this thesis, we propose different ways to control the GAs parameters.


Notices d'autorité liées

... Références liées : ...